FlashPro2000 Flash Programmer
Multi-FPA API-DLL User’s Guide

Software version 1-1

PMO034A02 Rev.1
May-2009

Elprotronic Inc.

Elprotronic Inc.

16 Crossroads Drive

Richmond Hill,

Ontario, L4E-5C9

CANADA

Web site: www.elprotronic.com
E-mail: info @elprotronic.com
Fax: 905-780-2414

Voice: 905-780-5789

Copyright © Elprotronic Inc. All rights reserved.

Disclaimer:

No part of this document may be reproduced without the prior written consent of Elprotronic Inc.
The information in this document is subject to change without notice and does not represent a
commitment on any part of Elprotronic Inc. While the information contained herein is assumed to
be accurate, Elprotronic Inc. assumes no responsibility for any errors or omissions.

In no event shall Elprotronic Inc, its employees or authors of this document be liable for special,
direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claims for lost
profits, fees, or expenses of any nature or kind.

The software described in this document is furnished under a licence and may only be used or copied
in accordance with the terms of such a licence.

Disclaimer of warranties: You agree that Elprotronic Inc. has made no express warranties to You
regarding the software, hardware, firmware and related documentation. The software, hardware,
firmware and related documentation being provided to You “AS IS” without warranty or support
of any kind. Elprotronic Inc. disclaims all warranties with regard to the software, express or implied,
including, without limitation, any implied warranties of fitness for a particular purpose,
merchantability, merchantable quality or noninfringement of third-party rights.

Limit of liability: In no event will Elprotronic Inc. be liable to you for any loss of use, interruption
of business, or any direct, indirect, special incidental or consequential damages of any kind
(including lost profits) regardless of the form of action whether in contract, tort (including
negligence), strict product liability or otherwise, even if Elprotronic Inc. has been advised of the
possibility of such damages.

END USER LICENSE AGREEMENT

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE AND
THE ASSOCIATED HARDWARE. ELPROTRONIC INC. AND/OR ITS SUBSIDIARIES
(“ELPROTRONIC”) IS WILLING TO LICENSE THE SOFTWARE TO YOU AS AN
INDIVIDUAL, THE COMPANY, OR LEGAL ENTITY THAT WILL BE USING THE
SOFTWARE (REFERENCED BELOW AS “YOU” OR “YOUR”) ONLY ON THE CONDITION
THAT YOU AGREE TO ALL TERMS OF THIS LICENSE AGREEMENT. THIS IS A LEGAL
AND ENFORCABLE CONTRACT BETWEEN YOU AND ELPROTRONIC. BY OPENING THIS
PACKAGE, BREAKING THE SEAL, CLICKING “I AGREE” BUTTON OR OTHERWISE
INDICATING ASSENT ELECTRONICALLY, OR LOADING THE SOFTWARE YOU AGREE
TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO
THESE TERMS AND CONDITIONS, CLICK ON THE “T DO NOT AGREE” BUTTON OR
OTHERWISE INDICATE REFUSAL, MAKE NO FURTHER USE OF THE FULL PRODUCT
AND RETURN IT WITH THE PROOF OF PURCHASE TO THE DEALER FROM WHOM IT
WAS ACQUIRED WITHIN THIRTY (30) DAYS OF PURCHASE AND YOUR MONEY WILL
BE REFUNDED.

1. License.

The software, firmware and related documentation (collectively the “Product”) is the property of
Elprotronic or its licensors and is protected by copyright law. While Elprotronic continues to own
the Product, You will have certain rights to use the Product after Your acceptance of this license.
This license governs any releases, revisions, or enhancements to the Product that Elprotronic may
furnish to You. Your rights and obligations with respect to the use of this Product are as follows:

YOU MAY:

A. use this Product on many computers;

B. make one copy of the software for archival purposes, or copy the software onto the hard disk
of Your computer and retain the original for archival purposes;

C. use the software on a network

YOU MAY NOT:

A. sublicense, reverse engineer, decompile, disassemble, modify, translate, make any attempt

to discover the Source Code of the Product; or create derivative works from the Product;
B. redistribute, in whole or in part, any part of the software component of this Product;

C. use this software with a programming adapter (hardware) that is not a product of
Elprotronic Inc or Texas Instruments Inc.

2. Copyright

All rights, title, and copyrights in and to the Product and any copies of the Product are owned by
Elprotronic. The Product is protected by copyright laws and international treaty provisions.
Therefore, you must treat the Product like any other copyrighted material.

3. Limitation of liability.

In no event shall Elprotronic be liable to you for any loss of use, interruption of business, or any
direct, indirect, special, incidental or consequential damages of any kind (including lost profits)
regardless of the form of action whether in contract, tort (including negligence), strict product
liability or otherwise, even if Elprotronic has been advised of the possibility of such damages.

4. DISCLAIMER OF WARRANTIES.

You agree that Elprotronic has made no express warranties to You regarding the software, hardware,
firmware and related documentation. The software, hardware, firmware and related documentation
being provided to You “AS IS” without warranty or support of any kind. Elprotronic disclaims all
warranties with regard to the software and hardware, express or implied, including, without
limitation, any implied warranties of fitness for a particular purpose, merchantability, merchantable
quality or noninfringement of third-party rights.

This device complies with Part 15 of the FCC Rules.
Operation is subject to the following two conditions:
(1) this device may not cause harmful interference and

(2) this device must accept any interference received,
including interference that may cause undesired
operation.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital devices,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy
and, if not installed and used in accordance with the instruction manual, may cause harmful interference to
radio communications. However, there is no guarantee that interference will not occur in a particular
installation. If this equipment does cause harmful interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one
of more of the following measures:

* Reorient or relocate the receiving antenna

* Increase the separation between the equipment and receiver

* Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
&

Consult the dealer or an experienced radio/TV technician for help.

Warning: Changes or modifications not expressly approved by Elprotronic Inc. could void the user’s authority
to operate the equipment.

This Class B digital apparatus meets all requirements of the Canadian
Interference-Causing Equipment Regulations.

Cet appereil numerique de la classe B respecte toutes les exigences du
Reglement sur le material brouilleur du Canada.

Table of Contents

L Introduction e 8
2. Getting Started e 13
2.1 MyFP2000Prg Projectst 13

3. Example with APIDLLttt e 16
3.1 Example with single FPA 16

3.2 Example with Multi-FPA APIDLL 17

4. List of the DLL iNSITUCHIONS ottt et e e e ettt 20
4.1 Multi-FPA InStructions ittt et eae s 23
F_Trace_ON e e e e e 23

F Trace OFF e 23
F_OpenInstances e 24
F_CloseInstancesutiitii et e 24
F_OpenlnstancesAndFPAs i 25

F Set FPA_INdEX . ..ottt e e 29

F Get_ FPA_INdeX . .. oottt e s, 30
F_Check_FPA_index 30
F_Disable_FPA_Index it 30

F Enable FPA _IndexX i, 31

F LastStatuso oot 31
F_Multi_DLLTypeVer 32
F_Get_FPA_SN ... 32

4.2 GEeNeric INStIUCLIONS . . . o\ttt ettt e et e et e et e et e 33

F Check FPA_aCCESS . ..o oot e e, 33
F_Initialization e e e 34

F_Close_All e e e 35

F_SetConfig e 36

F_GetConfig e e 41
F_Get_Device_Info 41

F_DispSetupo 45
F_ReportMessage, F_Report_Message 45

F_GetReportMessageChar, 46

F_DLLTYpeVer e e e e 47
F_ConfigFileLoad i 48
F_Reset_Target e 49
F_Get_Targets_Vee . ..o e 50
4.3 Data Buffers access inStructionsiitiiinneanneenn... 51
F ReadCodeFile e, 51
F_Get_CodeCS e e e e 52
F_ReadPasswFile i 53
F Clr_Code Buffer i, 54
F Put Word_to_Code Buffer 54
F_Get_Word_from_Code_Buffer 55
F_Put_ Word_to_ CSM_Buffer 56
F Get_Word_from_CSM _Buffer 56
F Put_ Word_to_Buffer 57
F_Get_Word_from_Buffer, 57
4.4 Encapsulated InStruCtionsottt 59
F_AutoProgram 59
F_Verify CSM_Password 60
F_Memory_Erase 61
F_Memory_Blank_Check 61
F_Memory_Write e 62
F_Memory_Verify e 62
F_Memory_Read 62
F_Write_CSM_Password i, 63
4.5 Sequential INStrUCHIONSttt e e et e 64
F_Open_Target_Devicet 64
F_Close_Target_Deviceot 65
F_Segment_Erase........ 65
F Sectors_Blank_Check 66
F_Write_Word_to_RAM 67
F_Read_Word e e 67
F_Copy_Buffer_to_Flash 68
F_Copy_Flash_to_Buffer............ 69

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 7

1. Introduction

The FlashPro2000 adapter can be remotely controlled from other software applications
(Visual C++, Visual Basic etc.) via a DLL library. The Multi-FPA - allows to remotely control
simultaneously up to sixteen Flash Programming Adapters (USB-FPAs) significantly reducing
programming speed in production.

Figure 1.1 shows the connections between PC and up to sixteen programming adapters. The
FPAs can be connected to PC USB ports directly or via USB-HUB. Direct connection to the PC is
faster but if the PC does not have required number of USB ports, then USB-HUB can be used. The
USB-HUB should be fast, otherwise speed degradation can be noticed. When the USB hub is used,
then the D-Link’s Model No: DUB-H7, P/N BDUBH7..A2 USB 2.0 HUB is recommended.

FlashPro2000 - Multi-FPA API-DLL

/

14-wires ribbon cable
USB-FPA Target Device

\

[I

Up to 16 USBs connection
from PC.
Directly or via USB-HUB

Via USB HUB

Up to sixteen FPAs to one PC

i i — —— i ——— " —— i -

Figure 1.1

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 8

Block diagram of the Multi-FPA application DLL is presented on the Figure 1.2.

FlashPro2000 Multi-FPA API-DLL
Application Software (C++, LabVIEW etc.) |

= Multi-FPA DLL Selector and Task Manager |

Q

E h 4 h 4 v

<| apioLL | | ApiDLL }eseeeeeeeee APLDLL |

E Simultaneous processes

; Juss-1 Juss.2 | usB-16

§ FPA-1 I FPA-2 I............... FPA-16
IDevioe-1 I I Device-2 I meemmmmRmesmaes I Device-16

Figure 1.2

To support this new Multi-FPA API-DLL feature, the software package contains seventeen dll files
- the Multi-FPA API-DLL selector (FlashPro2000-FPAsel.dlIl)
- sixteen standard single FPAs API-DLLs (FlashPro2000-FPA1.dll,)

Figure 1.3 shows the logical connections between these dll files.

The main Multi-FPA dll (FPA-selector - FlashPro2000-FPAsel.dll) allows to transfer API-DLL
functions coming from application software to desired single application dll (FlashPro2000-FPA1.dIl
to FlashPro2000-FPA16.dll).
The FlashPro2000-FPAsel.dll file is transparent for all API-DLL functions implemented in the single
FPA API-DLLs functions. Desired destination FPA can be selected using the function
F_Set_FPA_index(fpa);
where the
fpa =1 to 16 when only one desired FPA required to be selected
or fpa =0 when ALL active FPAs should be selected.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 9

The selected FPA index modified by the F_Set_FPA_index(fpa) instruction can be modified at any
time. By default, the FPA index is 1 and if only one FPA is used then fpa index does not need to be
initialized or modified. When the fpa index 1 to 16 is used, then the result is coming back to
application software from the single API-DLL via transparent Multi-FPA dll. When fpa index is O
(ALL-FPAs) and results are the same from all FPAs, then the same result is passing back to
application software. If results are not the same, then the Multi-FPA dll is returning back value -1
(minus 1) and all recently received results can be read individually using function
F_LastStatus(fpa)

Most of the implemented functions allows to use the determined fpaindex 1 to 16 or O (ALL-FPAs).
When functions return specific value back, like read data etc, then only determined FPA index can
be used (fpaindex from 1 to 16). When the fpa index is 0 (ALL-FPAs) then almost all functions are
executed simultaneously. Less critical functions are executed sequentially from FPA-1 up to FPA-16
but that process can not be seen from the application software.

When the inactive fpa index is selected, then return value from selected function is -2 (minus 2).
When all fpa has been selected (fpa index = 0) then only active FPAs will be serviced. For example
if only one FPA is active and fpa index=0, then only one FPA will be used. It is save to prepare the
universal application software that allows to remote control up to sixteen FPAs and on the startup
activate only desired number of FPAs.

It should be noticed, that all single API-DLLs used with the Multi-FPA DLL are fully independent
to each other. From that point of view it is not required that transferred data to one FPA should be
the same as the transferred data to the others FPAs. For example code data downloaded to FPA-1
can be different that the code data downloaded to the FPA-2, FPA-3 etc. But even in this case the
programming process can be done simultaneously. In this case the desired code should be read from
the code file and saved in the API-DLL-1, next code file data should be saved in the API-DLL-2 etc.
When it is done, then the F_AutoProgram can be executed simultaneously with selected all active
FPAs. All FPAs will be serviced by his own API-DLL and data packages saved in these dlls.

The following commands are supported in the DLL library:
Initialization and termination communication with the programming adapter,
Programmer configuration setup,
Programming report message,
Code data and password data read from the file,
Reset target device,
Auto program target device (erase, blank check, program and verify),
CSM Password verification,

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 10

All or selected part of memory erase,

All or selected part of memory blank check,
All or selected part of memory write,

All or selected part of memory verify,

All or selected part of memory read,

Open or close communication with the target device,
Selected memory segment erase,

Selected part of memory blank check,
Selected part of memory segment write,
Selected part of memory segment read,
CSM Password write.

The FlashPro2000 Flash Programmer software package contains all required files to remotely control
programmer from a software application. When software package is installed then by default the
DLL file, library file and header file are located in:

C:\Program Files\Elprotronic\C2000\USB FlashPro2000\API-DLL
FlashPro2000-FPAsel.dll - Multi-FPA selection/distribution DLL
FlashPro2000-FPA1.dll - API-DLL for FPA adapter
FlashPro2000-Dll.h - generic header file for dll
FlashPro2000-FPAsel-BC.lib - lib file for Borland VC++
FlashPro2000-FPAsel.lib - lib file for MS VC++

C2000-Errors-list.cpp - Errors list description
C2000-Errors-list.h - Errors list definitions
config.ini - default configuration file for the FPAs (optional)

The entry dll (FlashPro2000-FPAsel.dll) contains two groups of the same functions used in
C++ application and Visual Basic applications All procedure names used in the Visual Basic are
starting from VB_xxxx, (and have the _stdcall calling declaration) when procedure names used in
the C++ are starting from F_xxxx (and have the _Cdecl calling declaration).

When the MS VC++ application is created, then following files should be copied to the source
application directory:

FlashPro2000-Dll.h - header file for C++
FlashPro2000-FPAsel.lib - lib file for C++
C2000-Errors-list.cpp - (Optional) Errors list description
C2000-Errors-list.h - Errors list definitions

and to the release/debug application directory
FlashPro2000-FPAsel.dll - Multi-FPA selection/distribution DLL

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 11

FlashPro2000-FPA1.dll - API-DLL for FPA adapter
config.ini - (optional) default configuration file for the FPAs

Executable application software package in C++ the requires following files

When application in Visual Basic is created, then following files should be copied to the source or
executable application directory:
FlashPro2000-FPAsel.dll - Multi-FPA selection/distribution DLL
FlashPro2000-FPA1.dll - API-DLL for FPA adapter
config.ini - (optional) default configuration file for the FPAs

All these files ‘as is’ should be copied to destination location, where application software using DLL
library of the FlashPro2000 Flash programmer is installed. The config.ini file has default setup
information. The config.ini file can be modified and taken directly form the FlashPro2000 Flash
Programmer (GUI) application software. To create required config.ini file the GUI FlashPro2000
Flash programmer software should be open and required setup (memory option, interface select etc)
should be created. When this is done, programming software should be closed and the config.ini file
with the latest saved configuration copied to destination location. Note, that the configuration setup
can be modified using DLL library function.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 12

2. Getting Started

2.1 MyFP2000Prg Projects

The MyFP2000Prg projects are examples of using the Multi-FPA API-DLL with Microsoft Visual
Studio 7.0 (2002). They are intended to help users create their own application that uses the API-
DLL by providing a simple starting point. When using Visual Studio C++ include the following files
should be included to your program:

FlashPro2000-Dll.h
FlashPro2000-FPAsel.lib
FP2000FPAOLib.cpp
FP2000FPAOLib.h
C2000-Error-list.cpp
C2000-Error-list.h

The above files are located in the following directory:
...\Elprotronic\C2000\USB FlashPro2000\API-DLL-MyPrg\Cpp\scr

To run your application you will need to allow your application access to the Multi-FPA dynamically
linked library. A simple way to do this is to copy the following files into your directory where
executable file is located:

FlashPro2000-FPAsel.dll
FlashPro2000-FPA1.dll
config.ini (optional)
The easy demo project MyFP2000Prg uses API-DLLs and files listed above is located in directory

..\Elprotronic\C2000\USB FlashPro2000\API-DLL-MyPrg\Cpp\MyFP2000Prg

and are included for demonstration purposes only. The sample project can be opened by selecting
the project file MyFP2000Prg.veproj located in directory

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 13

..\Elprotronic\C2000\USB FlashPro2000\API-DLL-MyPrg\Cpp\MyFP2000Prg

The following dialog box will be displayed when project executed (see figure 2.1).

ﬂ,— Easy Demo of MyFPZ000Prg - Yisual C++ (Elprotronic Inc.) I _ 1!
Source files For this program can be included as a starting point For _ﬂ FP& Initialization I
wour application. The Following files should be included in wour program:

FlashProz00-FPasel,lib Devices
FlashProz000-Dil.h TMS320F2808 -
FPZ000FPA-Lib b I _|
FPZ000FPA-Lib.cpp Interface
C2000-Error-list.h | mAG Fastupto 3mMbjs x|

C2000-Error-list, cpp

LK [Hz]: | 20,00
The above Files are located in the following directory: [z
. \Elprotronich C20004USE FlashProz000aPT-DLL-MyProlCpplscr T
&dd these files ko your project, Open Code File |

Please do not modify these files, Random Code Data |
The remaining files in this project are included For demonstration purposes only,
Wehen running vour application remember to place the Following Files in Display configuration |

the same directory as wour executable File:
FlashProz000-FPasel, dil
FlashProz000-FPal.dll Aukoprogram
config.ini {optional)

Werif
See APT-DLL User Guide For further details, i

j Sequential Functions

|
|
Read Flash I
|

See source code For details, se the MS Wisual C++ 7.0 (2002} or higher For debugging, HELF EXIT

Figure 2.1
Dialog box contains few buttons, that call procedures listed in the mentioned above files. See
contents in the MyFP2000PrgDIg.cpp file located in the project directory, how these procedures are
called from application software. There are several useful procedures located in the FP2000FPA -
Lib.cpp file that significantly simplify the FPA initialization process. See comments for each
procedures located in this file.

The first procedure named
Scan_all_FPAs()
searches all FPAs connected to your PC via USB ports. As the results, adapter serial numbers of the

detected FPAs are located in the FPA_SN_list[k] where k = 0 up to 15. Up to sixteen FPA SN can
be located in this data block. SN list are located starting from FPA_SN_list[0].

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 14

get _devices_list()

The get_devices_list() procedure takes a list of supported target devices containing MCU name,
flash start and end addresses etc. from API-DLL .The MCU list is saved in the following structure

typedef struct

{
char name [DEVICE_NAME_SIZE];

int index;

long flash_start_addr;
long flash_end_addr;
long OTP_start_addr;
long OTP_end_addr;
long RAM_size;

int group;

int double_1ID;

} DEVICELIST;
DEVICELIST DeviceList[300];

Up to 100 devices can be saved in DeviceList. When required, the size of this data block can be
increased in the future. Currently, device list contains about 30 devices. The device names in the
Devicelist are sorted in alphabetic order. Alphabetical order is convenient for users, however the
API-DLL requires fixed MCU index when selecting the particular MCU. In the structure above the
MCU index required by API-DLL is located in

DeviceList[k].index

and procedure setting the required MCU becomes as follows

F_SetConfig(CFG_MICROCONTROLLER, Devicelist[k].index);

All other useful procedures that can be useful are listed below
int set_default_config(void);
int write_data_to_buffer(int dest, long addr, long size, UINT16 *data);
int read_data_from_buffer(int source, long addr, long size, UINT16 *data);

See the MyFP2000PrgDlg.cpp file how to strat-up communication with FPA and how to use the
API-DLLs instructions.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 15

3. Example with API DLL

3.1 Example with single FPA

The code example described below uses one programming adapter. The Multi-FPA API-DLL
selector should be select for FPA-1 only. The fpa_index should be set to 1 or should be unmodified.
The default value of the fpa_index when one adapter is detected only is 1.

Initialization opening procedure for the USB-FPA can be as follows:

response = F_OpenInstancesAndFPAs(“*# *"”);
// DLL and FPA (one only) initialization
if(response == 0)

{
//The FPA has not been found. Exit from the program.

}
F_Set_FPA_index(1); // select FPA 1 for
F_Initialization(); // init FPA

Below is an example of the simplified (without error handling procedures) application
program written in C++ that allows to initialize one FPA, and run an autoprogram with the same
features like an autoprogram in the standard FlashPro2000 (GUI) software.

1. Download data to target device

F_OpenInstancesAndFPAs(“*# *”); // DLL and FPA (one only) initialization
if(response == 0)
{
//The FPA has not been found. Exit from the program.
}

F_Set_FPA_index(1); // select FPA 1 only
F_Initialization(); // init FPA
//— functions above initialized at the startup only —--——-
F_ReadConfigFile(filename); // read configuration data and save
// to API-DLLs
F_ReadCodeFile(format, filename); // read code data and save to DLL
do
{
status = F_AutoProgram(1); //start autoprogram
if (status != TRUE)

{

//'"status’ contains status error number
// see the C2000-Error-list.h and C2000-Error-list.cpp list
// and error description

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 16

//— functions below called at the end of session
F_CloselInstances();

Note: The F_OpenlInstancesAndFPAs(..) and F_Initialization() functions should be called once
and the startup and the F_Closelnstances() function should be called as the last one after all
functions are finished in similar way like the FlashPro2000 GUI software is opening once
and closed at the end when job is finished. The startup initialization take few seconds (when
the F_OpenlInstancesAndFPAs(..) and F_Initialization() are executed) until dIl
installation is established and desired firmware downloaded to FPA adapter(s). Application
software should call the initialization procedures at the startup only, and close access to API-
DLL at the end, when all tests of a lot of units are finished. Closing instances and opening
it again is a waist a time.

3.2 Example with Multi-FPA API DLL

The code example described below uses Multi-FPA API-DLL. The multi-FPA API-DLL is a shell
that allows to transfer incoming instructions from application software to desired FPA’s. All
instructions related to single FPA are detailed described in the chapters 4.2, 4.3, 4.4 and 4.4.
Instructions specific to Multi-FPA features described in the chapter 4.1.

Application DLL should be initialized first, before other DLLs instruction can be used.

response = F_OpenInstancesAndFPAs(FPAs-setup.ini);

// DLL and FPA initialization
if (response ==)

{

//The FPA has not been found. Exit from the program.

}
F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA's
F_Initialization(); // init all FPA’s

In example above number of the opened USB-FPAs are specified in the ‘FPAs-setup.ini’

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 17

Below is an example of the simplified (without error handling procedures) application program
written in C++ that allows to initialize all dlls and FPA, and run an autoprogram with the same
features like autoprogram in the standard FlashPro2000 application software.

1. Download data to all target devices (uses USB-FPA5s)

response = F_OpenInstancesAndFPAs(FPAs-setup.ini);
// DLL and FPA initialization
if (response ==)

{
//The FPA has not been found. Exit from the program.

}

F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA'’s
F_Initialization(); // init all FPA'’s
F_ReadConfigFile(filename); // read configuration data and save
// to all API-DLLs
F_ReadCodeFile(filename); // read code data and save to all //
API-DLLs
do
{
status = F_AutoProgram(1);

//start autoprogram-to program all targets simultaneously with
//the same downloaded data to all target devices.

if (status != TRUE)
{
if (status == FPA_UNMACHED_RESULTS)
{
for (n=1; n<=MAX_FPA_INDEX; n++) status[n] = = F_LastStatus(n);
}
else

F_CloselInstances();

Note, that all single API-DLL are independent from each others and it is not required that all data
and configuration should be the same for each API-DLLs (each FPAs, or target devices) . For
example - code data downloaded to the first target device can be the same (but it is not required) as
code data downloaded to second target device etc. In the example below the downloaded code to

target devices are not the same .

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 18

2. Download independent data to target devices (uses USB-FPAs)

F_OpenInstancesAndFPAs(FPAs-setup.ini); // DLL and FPA initialization

F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA’s
F_Initialization(); // init all FPA'’s
F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA’s
F_ReadConfigFile(filename); // read configuration data and save
// to all API-DLLs
F_Set_FPA_index(1); // select FPA 1
F_ReadCodeFile(filenamel); // read code data and save to
// API-DLL-1
F_Set_FPA_index(2); // select FPA 2
F_ReadCodeFile(filename2); // read code data and save to

// API-DLL-2

F_Set FPA_index(7); // select FPA 7
F_ReadCodeFile(filename7); // read code data and save to
// API-DLL-7
F_Set_FPA_index(8); // select FPA 8
F_ReadCodeFile(filename$8); // read code data and save to
// API-DLL-8
F_Set_FPA_index(ALL_ACTIVE_FPA); // select all FPA’s
do
{
status = F_AutoProgram(1);
//start autoprogram - to program all targets simultaneously

//with the independent downloaded data to all target devices.

if (status != TRUE)
{
if (status == FPA_UNMACHED_RESULTS)
{
for (n=1; n<=MAX_FPA_INDEX; n++) status[n] = = F_LastStatus(n);
}
else

F_CloseInstances();

See source code in the DEMO program written in Visual C++, Visual Basic or LabView for more
detail.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 19

4. List of the DLL instructions

Application DLLs files are the same for the application software written under Visual C++,
Visual Basic, LabView etc. From that reason the API-DLL not transfers the pointers from the API-
DLL to application, because Visual Basic (or other software) will not be able to use these functions.
When a lot of data are transferred from API-DLL to application, then these data should be read item
by item.

All DLL instructions are divided to four groups - related to Multi-FPA selector, single FPA
generic, single FPA encapsulated and single FPA sequential instructions. Multi-FPA specific
instructions are related to the Multi-FPA DLL only. Generic instructions are related to initialization
programmer process, while encapsulated and sequential instructions are related to target device’s
function. Encapsulated and sequential instructions can write, read, and erase contents of the target
device’s flash memory.

Multi-FPA specific instructions are related to load and release the single-FPA dlls, selection
of the transparent path and sequential/simultaneous instructions transfer management. All other
instructions are related to single FPAs.

Generic instructions are related to initialization programmer process, configuration setup and
data preparation, Vcc and Reset to the target device. Generic instructions should be called first,
before encapsulated and sequential instruction.

Encapsulated instructions are fully independent executable instructions providing access to
the target device. Encapsulated instructions can be called at any time and in any order. When called
then all initialization communication with the target device is starting first, after that requested
function is executed and at the end communication with the target device is terminated and target
device is released from the programming adapter.

The encapsulated functions should be mainly used for programming target devices. These
functions perform most tasks required during programming in an easy to use format. These functions
use data provided in Code Files, which should be loaded before the encapsulated functions are used.
To augment the functionality of the encapsulated functions, sequential functions can be executed
immediately after to complete the programming process.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 20

Sequential instructions allow access to the target device in a step-by-step fashion. For
example, a typical sequence of instructions used to read data from the target device would be to open
the target device, then read data and then close the target device. Sequential instruction have access
to the target device only when communication between target device and programming adapter is
initialized. This can be done when Open Target Device instruction is called. When communication
is established, then any number of sequential instruction can be called. When the process is finished,
then at the end Close Target Device instruction should be called. When communication is
terminated, then sequential instructions can not be executed.

Note: Inputs / outputs has been defined as INP_X, and LONG_X. Both of them are defined as 4
bytes long (see FlashPro2000-DIl.h header file)

#define INP_X _int32

#define LONG_X _int32

Make sure that an application using the DLL file has the same length of desired data.

Figure 4.1 shows the structure of the Multi-FPA API-DLL. It shows that the Multi-FPA DLL is used
to communicate with the user application as well as the target devices. Each of the target devices is
accessed by a single DLL associated with it. When more then one FPA is needed, up to 16 DLLs can
be created to communicate with up to 16 devices at a time. Each instance of an FPA-DLL contains
its own copy of buffers, as shown in Figure 4.2

Data can be transferred from

application to selected API-DLL,, or FPA-1 APIDLL-1
simultaneously to all API-DLLs - (FlashPro2000-
FPA1.4dIl)
FPA-2 API-DLL-2
P (FlashPro2000-
FPA2.dIl)
Multi-FPA .
e I ™ :
(FlashPro2000- :
FPAsel.dll) i
n
API-DLL- 16
Data can be transferred only from FPA-16) (FlashPro2000-
selected API-DLL to application FPA16.d11)

Figure 4.1 Multi-FPA API-DLL diagram

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 21

F ReadCodeFile
F_Clr Code_ Buffer
F Put Wordie Code Buffer

F_Auteprogram
F Memory Write
Code Buffer | F-Memory Verify

F Get Word from Code Buffer
F_Get CodeCSs

and
Code Used

5 o = =

F ReadPasswFile
F Put Word toCSM Buffer

Flags

o -

‘F et Bite from Password Buffer

CSM Passwords

F Verify CSM Password
} F Write CS5M_Password

Buffer

F Put Word to Buffer

g — g

Write Data
Buffer F_Copy_Buffer to Flash

F Reset Target, F Memory Erase, F Segment Erace,
F Open Target Device,F Close Target Device, F Write Word to RARM,

<

=T e

F_Read Wond

F Get Target Voo, F Memory Blank Checle, F Sector Blank Check

Target
Device

el

F Get Word from Buffer

Read Data

Buffer ‘

F_Memory Read,
F_Copy Flash to Buffer

Figured4.2 API-DLL instructions diagram

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1

22

4.1 Multi-F PA instructions

The Multi-FPA API-DLL instructions are related to Multi-FPA selector only. These
instructions allows to initialize all single applications dlls and select the instruction patch between
application software and desired FPA and sequential/simultaneous instructions transfer management
Up to sixteen independent FPAs can be remotely controlled from the application software. All
instructions from application software can be transferred to one selected FPA or to all FPAs at once.
That feature allows to increase programming speed and also allows to have individual access to any
FPA is required.

F _Trace ON

F_Trace_ON - This function activate the tracing.

The F_Trace_ON() opens the DLLtrace.txt file located in the current directory and records all API-
DLL instructions called from the application software. This feature is useful for debugging. When
debugging is not required then tracing should be disabled. Communication history recorded in the
in the last session can be viewed in the DLLtrace.txt located in the directory where the API-DLL
file is located. When the new session is established then the file DLLtrace.txt is erased and new
trace history is recorded.

Note: Tracing is slowing the time execution, because all information passed from application
software to API-DLL are recorded in the dlltrace.txt file.

Syntax:
void MSPPRG_API F_Trace_ON(void);

F Trace OFF

F _Trace OFF - Disable tracing, See F_Trace_ON for details.

Syntax:
void MSPPRG_API F_Trace_OFF(void);

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 23

F_Openlnstances

F_Openlnstances - API-DLL initialization in the PC.

Instruction must be called first - before all other instruction. Instead this function the

F_OpenlnstancesAndFPAs is recommended.

Important: Itis not recommended to use this function. Function used only for compatible with

the old software. Use the F_OpenlInstancesAndFPAs instead.

Do not use the F_OpenlInstances or F_Check_FPA_access after using the
F_OpenlnstancesAndFPAs. The F_OpenlnstancesAndFPAs is assigning the FPAs to
USB ports and it is not recommended to reassign once again the USB port using the
F_Check_FPA_access function. To check the communication activity with FPA use the
F_Get_FPA_SN function that allows to check te communication with the FPA adapter

without modifying the USB ports assignment.

Syntax:
INT X MSPPRG_API F_OpenlInstances (BYTE no);

Parameters:
no -> number of the single API-DLL to be open
no —> 1 to MAX_USB_DEV_NUMBER
where MAX_USB_DEV_NUMBER = 16

Return value:
number of opened instances

F_Closelnstances

F_Closelnstances - Close all active API-DLLs and free system memory.
Syntax:
INT X MSPPRG_API F_CloseInstances (void);
Parameters:
void

Return value:
TRUE

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 24

F_OpenlnstancesAndFPAs

F_OpenlnstancesAndFPAs - API-DLL initialization in the PC and programming adapters
scan and assignment to desired USB port according to contents of the FPA’s list specified
in the string or FPA’s configuration file.

Instruction must be called first - before all other instruction. Function is opening the number
of the desired API-DLL and assigning the desired adapters to available USB ports. Regardless of the
USB port open sequence and connection of the USB-FPA, the F_OpenInstancesAndFPAs instruction
is reading the FPA’s list, scanning all available adapters connected to any USB ports and assigning
the indexes to all adapters according to contents of the FPA list (from string or configuartion file).
All adapters not listed in the FPA configuration file and connected to USB ports are ignored.

Important: Donotusethe F_Check_FPA_access after using the F_OpenInstancesAndFPAs.
The F_OpenInstancesAndFPAs is assigning the FPAs to USB ports and it is not
recommended to reassign once again the USB port using the F_Check_FPA_access
function. To check the communication activity with FPA use the F_Get_FPA_SN
function that allows to check te communication with the FPA adapter without
modifying the USB ports assignment.

Syntax:
INT X MSPPRG_API F_OpenInstancesAndFPAs(char * List);

Parameters:
1. When the first two characters in the List string are *#, then reminding characters of the
string contain a list of desired FPAs serial numbers or IDs assigned to FPA-1, -2, ...-n

indexes, eg.
“x# 20060123, 20060234, 20060287"

2. When the first two characters in the List string are not *#, then the string contain file name

or full path of the file with a list of the FPA’s serial numbers, eg.
“C:\Program Files\Elprotronic\FPAs-setup.ini”

Return value:
number of opened instances

1. The FPA list in the string:
String -> “*# sN1, SN2, SN3, SN4, SN5...”
Where the
SN1- FPA’s serial number that should be assigned to FPA-1 index

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 25

SN2- FPA’s serial number that should be assigned to FPA-2 index
etc.
As a delimiter the comma °,” or white space ‘ ’ can be used.
Example:
“*# 20090123, 20090346, 20090222, 20090245"
or
“*4# 20090123 20090346 20090222 20090245"

List of the acceptable numbers or IDs for USB-FPA adapters:

1. FPAs serial number - 8 digits eg. 20090222
eg, ‘420090123 20090346 20090222 20090245"
Four USB-FPA will be used with SN as listed above
FPA-1 20090123
FPA-2 20090346
FPA-3 20090222
FPA-4 20090245
If from any reason the listed adapter is not found, then the FPA-x becomes empty. All other
adapters will have the same FPA-x indexes as specified in the list eg if the FPA SN is
missing, then only the FPA-3 will be empty. The FPA-4 will have the same position as
before.
FPA-1 20090123
FPA-2 20090346
FPA-3 Empty
FPA-4 20090245

2. ID “*® - to select any adapter - USB-FPA. No other adapters can be specified after
this definition.
eg, “*#20090123 20090346 20090222 *"
Last one will be any adapter USB-FPA not listed before.

Initialization examples:
1. F_OpenInstancesAndFPAs(“*# *”); // only one any adapter

or
2. F_OpenInstancesAndFPAs(snlist); // hardcoded SN list

2.The FPA list in the configuration file:

String -> “C:\Program Files\Elprotronic\FPAs-setup.ini”

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 26

The FPA list can be specified in the file using the same rules as the definitions described above.
Each defined adapter is listed after FPA-index s below eg:

; USB-FPA configuration setup *
; Elprotronic Inc. *
L —————————
; up to sixteen FPA can be specified and connected via USB to PC *
; syntax: *
; FPA-X Serial Number *
; where FPA-x can be FPA-1, FPA-2, FPA-3 up to FPA-16 *
; Serial number - get serial number ir ID from the desires *
; adapter's label *
; Minimum one FPA's must be specified *
; FPA-x order - any *
7 *
;FPA-1 20090116 *
;FPA-3 20090199 *
;FPA-5 20090198 *

14

FPA-1 20090123
FPA-2 20090234

; NotePad editor can be used to create the FPA configuration file.

When the ‘*’ is used instead FPA’s SN, then any FPA will be accepted. The ‘*’ can be used only
once and on the end of the FPA’s list eg.

FPA-1 20090116
FPA-2 20090199

FPA-3 *
or
FPA-1 *

when only one adapter (any adapter) is used.

Example:
1. Only one FPA is used:

F_OpenInstancesAndFPAs(“*# *”); //DLL startup and FPA assignment
//by default - FPA-1 is selected.
//The F_Set_FPA_index(1l) is not required.

F_Initialization(); //FPA 1 initialization
F_ReadConfigFile(filename); //download configuration to DLLs.
F_ReadCodeFile(filename); //download code file to DLLs.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 27

do
{
status = AutoProgram(l); //start autoprogram
if(status != TRUE)
{

// service software when results from FPAs are not the same

} while(1);
F_CloseInstances();
// release DLLs from memory

2. More then one FPA is used.

F_OpenInstancesAndFPAs (FPAs-setup.ini);
//DLL startup and FPA assignment
F_Set_FPA_index (ALL_ACTIVE_FPA);
//select all available FPAs
F_Initialization();
//init all FPAs
F_ReadConfigFile(filename);
//download the same configuration to all DLLs.
F_ReadCodeFile(filename);
//download the same code file to all DLLs.
do
{
status = AutoProgram(l);
//start autoprogram to all FPAs simultaneously.
if(status != TRUE)
{
if(status == FPA_UNMATCHED_RESULTS)
{

// service software when results from FPAs are not the same

else

} while(1);
F_CloseInstances();
// release DLLs from memory

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 28

F Set FPA_ index

F_Set_FPA_index - Select desired FPA index (desired DLL instance)
VALID FPA index -(1to16) or0 (ALL FPAs).
Syntax:
INT_X MSPPRG_API F_Set_FPA_index (BYTE fpa);
Parameters:
fpa -> 1 to MAX_FPA_INDEX where MAX_FPA_INDEX = 16

or 0 -> ALL_ACTIVE_FPA

note: instead of ‘0' value it can be used global defined
ALL_ACTIVE_FPA that is defined as

#define ALL_ACTIVE_FPA 0

in the header file

Return value:
TRUE - if used fpa index is wvalid

FPA_INVALID_NO - 1if used fpa index is not activated or out of range

note: FPA_INVALID_NO -> -2 (minus 2)

IMPORTANT: When any function is trying to access the invalid FPA, then return value

from this function is -2 (FPA_INVALID_NO)

Note: When index ALL_ACTIVE_FPA (0) is used, then all data can be transferred from application to all active
FPA’s (API-DLLs). However, when the data is transferred from FPA (or API-DLLs) to the application, then
the FPA index CANNOT be ALL_ACTIVE_FPA (0). Index must select desired FPA. When the simultaneous
process is required eg. reading flash contents from all target devices, then the F_Memory_Read() should be
called after the F_Set_FPA_index(ALL_ACTIVE_FPA). When finished, the contents of each buffer (inside
each API-DLLx) can be read using the F_Set_FPA_index(1), F_Set_FPA_index(2)

F_Get_Word_from_Buffer(..). See below .

F_Set_FPA_index (ALL_ACTIVE_FPA); //select all available FPAs

F_Memory_Read () ; //simultaneous process
for (fpa=1l; fpa=fpa_max; fpa++)
{

if(F_Set_FPA_index(fpa) == FPA_INVALID_NO) continue;
for (addr = addr_min; addr <= addr_max; addr++)
{
dataladdr] [fpa-1] = F_Get_Word_from_ Buffer (addr);

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1

29

F _Get FPA_index

F_Get_FPA_index - Get current FPA index

Syntax:
BYTE MSPPRG_API F_Get FPA_index (void);

Return value:
current FPA index

F_Check FPA_index

F_Check_ FPA_index - Get current FPA index and check if index is valid.

Similar function to the F_Get_FPA_index, however, while the F_Get_FPA_index is returning
current FPA index ragardless if the index is valid or not, simply returning the value set by the
function F_Set_FPA_index(..). The Check_FPA _index will return -2 (minus two) FPA_INVALID_NO
if FPA is pointing not initialized FPA (dll instance).

Syntax:
INT_X MSPPRG_API F_Check FPA_index (void);

Return value:
current FPA index (0, 1 to 16)
or -2 (minus two) FPA_INVALID_NO

F _Disable FPA_ index

F_Disable_ FPA_index - Disable desired FPA index (desired DLL instance)
VALID FPA index -(1to16)

Function allows to disable communication with selected FPA adapter. From application point of
view, all responses will be the same as from the not active FPA. Communication with target devices
connected to selected FPA will be stopped. When the F_Set_FPA_index(0) will be used, then
selected FPA will be ignored. Result will not be presented in the Status results (Status and
F_LastStatus(..)).

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 30

Syntax:
void MSPPRG_API F_Disable FPA_index (BYTE fpa);

Parameters:
fpa -> 1 to MAX_FPA_INDEX where MAX_FPA_INDEX = 16

F _Enable FPA_ index

F_Enable FPA_index - Enable desired FPA index (desired DLL instance)
VALID FPA index -(1to16)

Function allows to enable communication with selected FPA adapter if the mentioned FPA has been
disabled using the function F_Disable_FPA_index(...). By default, all FPAs are enabled.
Syntax:

void MSPPRG_API F_Enable FPA_index (BYTE fpa);

Parameters:
fpa -> 1 to MAX_FPA_INDEX where MAX_FPA_INDEX = 16

F_LastStatus

F_LastStatus - Get current FPA index
VALID FPA index -(1to16)

Syntax:
INT X MSPPRG_API F_LastStatus (BYTE fpa);

Parameters:
fpa - FPA index of the desired status
fpa index -> 1..16

Return value:
Last status from the desired FPAs

All F_xxx functions returns the same parameters (status) as the original API_DLL is returning.
When function is transferred to all API-DLLs (when the fpa=0) then returned parameter (status)
is the same as the returned value from the API-DLLs when the ALL returned values ARE THE

SAME. If not, then returned value is
FPA_UNMATCHED_ RESULTS

(value of the FPA_UNMATCHED_RESULTS is minus 1).

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 31

To get the returned values from each FPAs, use the

For(n=1; n<=16; n++) status[n] = F_LastStatus(n);
where n -> desired FPA index
and get the last status data from FPA-1, 2, .. up to .16

F_Multi_DLLTypeVer

F_Multi_DLLTypeVer function returns integer number with DLL ID and software revision

version.
Syntax:
MSPPRG_API INT X F_Multi_ DLLTypeVer(void);

Return value:
VALUE = (DLL ID) | (OxOFFF & Version)
DLL ID = 0x6000 — Multi-FPA API-DLL for FlashPro430
DLL ID = 0x7000 — Multi-FPA API-DLL for GangPro430
DLL ID = 0x8000 - Multi-FPA API-DLL for FlashPro-CC
DLL ID = 0x9000 - Multi-FPA API-DLL for GangPro-CC
DLL ID = 0xCO000 — Multi-FPA API-DLL for FlashPro2000
DLL ID = 0xD0O00 - Multi-FPA API-DLL for GangPro2000
Version = (0xOFFF & VALUE)

F_Get_FPA_SN

F_Get_FPA_SN - Get FPAs Serial number assigned to selected FPA-index (selected

DLL instance number).

Syntax:
LONG_X MSPPRG_API F_Get_FPA SN (BYTE fpa);

Parameters:
fpa - FPA index of the desired status
fpa index -> 1..16

Return value:

Serial number of the selected FPA

or FPA_INVALID_NO - if used fpa index is not activated or out of range.
note: FPA_INVALID_NO —-> -2 (minus 2) (OxXFFFFFFFE)

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 32

4.2 Generic instructions

Generic instructions are related to initialization programmer process, configuration setup and
preparation data, turning ON and OFF target’s DC and RESET target device. Any communication
with the target device is provided when any of the generic instruction is executed. Generic
instructions should be called before encapsulated and sequential instruction.

F_Check FPA_access

F_Check_FPA _access - Check available Flash Programming Adapter (USB-FPA) connected
to specified USB drivers (USB driver index from 1 to 16)
VALID FPA index (DLL instance number) - (1 to 16)

Important: Itis not recommended to use this function. Function used only for compatible with
the old software. Use the F_OpenlInstancesAndFPAs instead.
Do not use the F_Openlnstances or F_Check FPA_access after using the
F_OpenlnstancesAndFPAs. The F_OpenlnstancesAndFPAs is assigning the FPAs to
USB ports and it is not recommended to reassign once again the USB port using the
F_Check_FPA_access function. To check the communication activity with FPA use the
F_Get_FPA_SN function that allows to check te communication with the FPA adapter
without modifying the USB ports assignment.

F_Check_FPA_access should be called as a first function when the *.dll is activated. Function
returns serial number of the detected flash programming adapter, or zero, if programming adapter
has not been detected with selected USB driver. Up to 16 USB drivers can be scanned.

To make a Multi-FPA software back compatible, the F_Check_FPA _access procedure is calling the
function F_OpenlInstances if none of the instances has not been activated before. That allows to
use old application software without calling the new type of Multi-FPA functions.

Syntax:
MSPPRG_API LONG_X F_Check FPA access (INT_X USB_index);

Parameters:
Index: USB driver index from 1 to MAX_USB_DEV_NUMBER
where MAX_USB_DEV_NUMBER = 16
Return value:
0 - FALSE
>0 - Detected USB-FPA Serial Number

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 33

Example:
long SN[MAX_USB_DEV_NUMBER+1];

F_OpenInstances(1); // DLL initialization - one instance
F_Set_FPA_index(1); // select access to the first instance
n = 0; //no of detected FPAs

for(k=1; k<=MAX_USB_DEV_NUMBER ; k++)
{
SN[k] = F_Check_FPA_access (k) ;
if (SN[k] > 20000000) n++;
}
F_CloselInstances(); // DLL initialization - one instance
F_OpenInstances(n); // Open “‘n’ instances - one per FPA

// Find desired FPAs SN and assign the FPAs serial number every time to the same
// FPA-index.
// For example if the

// SN[1]= 20090123

// SN[2]= 20090147

// SN[3]= O - adapter not present
// SN[4]= 20090135

// and desired assignment

// FPA-1 20090123

// FPA-2 20090135
// FPA-3 20090147
// then following sequence instructions can be used

F_Set_FPA_index(1) // select access to the first instance

F_Check_FPA_access(1); //assign FPA SN[1] = 20090123 to FPA-1
F_Set_FPA_index(2); // select access to the second instance
F_Check_FPA_access(4); //assign FPA SN[4] = 20090135 to FPA-2
F_Set_FPA_index(3); // select access to the third instance
F_Check_FPA_access(2); //assign FPA SN[2] = 20090147 to FPA-3

F_Set_FPA_index(ALL_ACTIVE_FPA); // select all active instances
F_Initialization() // All FPAs initialization

F Initialization

F_Initialization - Programmer initialization.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

F_Initialization function should be called after the communication with the FPA adapter is
established. To make a Multi-FPA software back compatible, the F_Initialization procedure is calling

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 34

the function F_OpenlInstancesAndFPAs(‘“*# *”) if none of the instances has not been activated
before. Also the FPA index is selected to 1 by default. That allows to use old application software
without calling the new type of Multi-FPA functions.
When the F_Initialization is called then:

- all internal data is cleared or set to the default value,

- initial configuration is downloaded from the config.ini file,

- USB driver is initialized if has not been initialized before.
Programming adapter must be connected to the USB to establish communication between PC and
programming adapter. Otherwise the F_Initialization will return FALSE result.

Syntax:
MSPPRG_API INT X F_Initialization(wvoid);

Return value:

0 - FALSE
1 — TRUE
4 - Programming adapter not detected.
-2 (OxXFFFFFFFE) - FPA_INVALID_NO
Example:
F_API_DLL_Directory(“..... ”)y // optional - see F_API_DLL_Directory()
If(F_Initialization() != TRUE) //required API-D11 - initialization

{

// Initialization error

F_Close_All

F_Close_All - Close communication with the programming adapter and release PC
memory.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

F_Close_All function should be called as the last one before *.dll is closed. When the F_Close_All
is called then communication port becomes closed and all internal dynamic data will be released
from the memory. To activate communication with the programmer when the function F_Close_All
has been used the F_lInitialization function must be called first.

Syntax:
MSPPRG_API INT X F_Close_All(void);

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 35

Return value:

0 - FALSE
1 — TRUE
-2 (OxXFFFFFFFE) - FPA_INVALID_NO
Example:
F_Initialization(); //required API-D11 - initialization

F_SetConfig

F_SetConfig - Setup one item of the programmer’s configuration.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

The F_SetSetup can modify configuration of the programmer. Current programmer setup can be read
using function setup F_GetSetup. When data is taken from the programmer, then part or all of the
configuration data can be modified and returned back to programmer using F_SetConfig function.
Configuration data structure and available data for all listed items in this structure are defined below.
Listed name and indexes in the [] brackets are related to the F_SetConfig and F_GetConfig
instructions. See index list in the F_SetConfig for details below.

Note: See theFlashPro2000-D1l.h header file for the list of the latest indexes,
definitions etc.

Syntax:
MSPPRG_API INT X F_SetConfig(INT_X index, LONG_X data);

Return value:
0 — FALSE
1 - TRUE
-2 — FPA_INVALID_NO

Example:

F_SetConfig(CFG_MICROCONTROLLER, MCU_Index);

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 36

Indexes used by the F_SetConfig and F_GetConfig functions

CFG_MICROCONTROLLER
CFG_INTERFACE
CFG_RESET_TIME_INDEX
CFG_RESET_PULSE_TIME
CFG_RESET_IDLE_TIME
CFG_APPL_START_EN
CFG_APPL_RUN_TIME
CFG_RELEASE_JTAG

CFG_BEEP_EN

CFG_VERIFYMODE
CFG_FLASH_ERASE_MODE
CFG_FLASH_NOT_ERASE_IFBLANK
CFG_DONOT_OVERWRITE_OTP
CFG_DEF_OTP_WRITE_EN
CFG_DEF_OTP_START_ADDR
CFG_DEF_OTP_STOP_ADDR
CFG_DEF_FLASH_ERASE_EN
CFG_DEF_ERASE_START_ADDR
CFG_DEF_ERASE _STOP_ADDR
CFG_RETAIN_DEF_DATA_EN
CFG_RETAIN_START_ADDR
CFG_RETAIN_STOP_ADDR
CFG_FLASH_READ_MODE

CFG_DEF _FLASH_READ_EN
CFG_DEF_READ_FLASH_START_ADDR
CFG_DEF_READ_FLASH_STOP_ADDR
CFG_DEF_OTP_READ_EN

CFG_DEF _READ_OTP_START_ADDR
CFG_DEF_READ_OTP_STOP_ADDR
CFG_CSMLOCK_PASSWORD_INDEX
CFG_CSMLOCK_PASSWORD_ENABLE
CFG_CLK_FERQ_IN_KHZ
CFG_JTAG_CHAIN_POS
CFG_JTAG_CHAIN_SIZE
CFG_JTAG_IRSIZE _DEVICE_1
CFG_JTAG_IRSIZE_DEVICE_2
CFG_JTAG_IRSIZE_DEVICE_3
CFG_JTAG_IRSIZE_DEVICE_4
CFG_JTAG_IRSIZE_DEVICE_5
CFG_JTAG_IRSIZE_DEVICE_6

O 0 9 N Lt W=

—_—
— O

B LW W W W LW W W W W N NN NN NN e e s e e e e
S O 0 1NN R W= O OO R WD~ O WOV WN

[CFG_MICROCONTROLLER 1]

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1

uProcIndex — Microcontroller type selection

TMS320Fxx 0 - TMS320F240
1 - TMS320F242
2 = e

See the latest MCU list and indexes in the FlashPro2000 (GUI) software.
Run software -> list available under pull down menu

Setup-> MSP list
Also the MCU index and MCU names can be taken from the instruction
F_Get_Device_Info (). See description of this instruction in this manual
for details.

[CFG_INTERFACE 2]

Interface - JTAG/SBW/BSL interface selection
COMM_SCI_BOOT 0 SCI-BOOT interface
COMM_JTAG_FAST 1 JTAG fast
COMM_JTAG_SLOW 2 JTAG slow

[CFG_RESET_TIME_INDEX 3]

ResetTimeIndex — Reset Pulse time setup
RESET_50MS_INDEX — USB->10ms, PP->50ms Reset Pulse time
RESET_100MS_INDEX — 100 ms Reset Pulse time
RESET_200MS_INDEX 200 ms Reset Pulse time
RESET_500MS_INDEX — 500 ms Reset Pulse time
RESET_CUSTOM_INDEX

s W NP o
|

[CFG_RESET_PULSE_TIME 4]
CustomResetPulseTime value 1 to 2000 step 1 in miliseconds
valid only when the ResetTimeIndex = RESET_CUSTOM_INDEX

[CFG_RESET_IDLE_TIME 5]
CustomResetIdleTime value 1 to 2000 step 1 in miliseconds
valid only when the ResetTimeIndex = RESET_CUSTOM_INDEX

[CFG_APPL_START_EN 6]
ApplicationStartEn - reset and start the microcontroller’s
application software when flash is successfully

programmed
APPLICATION_KEEP_RESET 0 — Hardware Reset Line permanent LOW
APPLICATION_TOGGLE_RESET 1 - Generate RESET Pulse (Pulse Low)
APPLICATION_NOT_RESET 2 - Do not modify Reset Line state
APPLICATION_JTAG_RESET 3 - JTAG software Reset

[CFG_APPL_RUN_TIME 7]

Value in seconds - 0 to 120 - when 0 - infinite time

[CFG_RELEASE_JTAG 8]

DEFAULT_JTAG_3ST 0
DEFAULT_JTAG_HI 1
DEFAULT_JTAG_LO 2

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 38

[CFG_BEEP_EN 9]
Enable (1) / disable (0)

[CFG_VERIFYMODE 10]
VERIFY_ NONE_INDEX O — no verification
VERIFY_STD_INDEX
VERIFY_FAST_INDEX

[y

- standard verification (read and verify)
- fast verification (calculate CS and verify)

N

[CFG_FLASH_ERASE_MODE 11]

ERASE_NONE_MEM_INDEX 0

ERASE_ALL_MEM_INDEX 1 (OTP and Flash)
ERASE_PRG_ONLY_MEM_INDEX 2 (Flash only)
ERASE_INFILE_MEM_INDEX 3 (taken from File)
ERASE_DEF_CM_INDEX 4 (defined OTP and Flash option)
WRITE_OTP_MEM_ONLY_INDEX 5 (OTP only)

[CFG_FLASH_NOT_ERASE_IFBLANK 12]
Enable (1) / disable (0)

[CFG_DONOT_OVERWRITE_OTP 13]
Enable (1) / disable (0)

[CFG_DEF_OTP_WRITE_EN 14]
Enable defined OTP erase option

[CFG_DEF_OTP_START_ADDR 15]
OTP Start Address when the defined flash erase option is selected

[CFG_DEF_OTP_STOP_ADDR 16]
OTP End Address when the defined flash erase option is selected

[CFG_DEF_FLASH_ERASE_EN 17]

Enable defined flash erase option

[CFG_DEF_ERASE_START_ADDR 18]
Flash Start Address when the defined flash erase option is selected

[CFG_DEF_ERASE_STOP_ADDR 19]
Flash End Address when the defined flash erase option is selected

[CFG_RETAIN_DEF_DATA_EN 20]
Enable (1) / disable (0)

[CFG_RETAIN_START_ADDR 21]
Retain Data Start Address

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 39

[CFG_RETAIN_STOP_ADDR 22]
Retain Data End Address

[CFG_FLASH_READ_MODE 23]

READ_ALL_MEM_INDEX 0 - Read all OTP and Flash memory
READ_PRGMEM_ONLY_INDEX 1 - Read Flash memory only
READ_INFOMEM_ONLY_INDEX 2 - Read OTP memory only
READ_DEF_MEM_INDEX 3 - Read OTP and Flash memory defined by

ReadStartAddr and ReadStopAddr

[CFG_DEF_FLASH_READ_EN 24]
Enable (1) / disable (0)
Defined Read Flash memory option

[CFG_DEF_READ_FLASH_START_ADDR 25]
Flash Start Address when the defined Read option is selected

[CFG_DEF_READ_FLASH_STOP_ADDR 26]
Flash End Address when the defined Read option is selected

[CFG_DEF_OTP_READ_EN 27]
Enable (1) / disable (0)
Defined Read OTP memory option

[CFG_DEF_READ_OTP_START_ADDR 28]
OTP Start Address when the defined Read option is selected

[CFG_DEF_READ_OTP_STOP_ADDR 29]
OTP End Address when the defined Read option is selected

[CFG_CSMLOCK_PASSWORD_INDEX 30]
CSM_DEFAULT_INDEX
CSM_CODE_FILE_INDEX
CSM_PASSWORD_FILE _INDEX
CSM_DEFINED_INDEX

W N = O

[CFG_CSMLOCK_PASSWORD_ENABLE 31]
Enable (1) / disable (0)

[CFG_CLK_FERQ_IN_KHZ 32]
External CLK frequency in kHz

[CFG_JTAG_CHAIN_POS 33]
Devices position in the JTAG chain
- from 1 to number of devices in the JTAG chain

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1

40

[CFG_JTAG_CHAIN_SIZE 34]

Number of devices in the JTAG chain- from 1 to 6

[CFG_JTAG_IRSIZE_DEVICE_1 35]

IR register size of the first device in the JTAG chain

[CFG_JTAG_IRSIZE_DEVICE_2 36]
[CFG_JTAG_IRSIZE_DEVICE_3 37]
[CFG_JTAG_IRSIZE_DEVICE_4 38]
[CFG_JTAG_IRSIZE_DEVICE_5 39]
[CFG_JTAG_IRSIZE_DEVICE_6 40]
IR register size of the 2-nd, 3-th device in the JTAG chain

Note: See theFlashPro2000-D1l.h header file for the list of the latest indexes,
definitions etc.

Example:
F_SetConfig(CFG_INTERFACE, COMM_JTAG_FAST);
F_SetConfig(CFG_CSMLOCK_PASSWORD_ENABLE, 0);
F_SetConfig(CFG_FLASH_ERASE MODE, ERASE_ALL_MEM INDEX);

F_GetConfig

F_GetConfig - Get one item of the programmer’s configuration.
VALID FPA index -(1to16)
Syntax:

MSPPRG_API LONG_X F_GetConfig(INT_X index);
Index’s list - see F_SetConfig

Return value:

Requested setup parameter;

1 - TRUE
-2 (OxXFFFFFFFE) - FPA_INVALID_NO

Example:

Interface = F_GetConfig(CFG_INTERFACE);

F _Get_Device Info

F_Get_Device Info - Get information related to selected microcontroller.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 41

VALID FPA index -(1to16)

Syntax:
MSPPRG_API INT X F_Get_Device_Info(INT_X index);

where index:
DEVICE_NAME 0
DEVICE_NAME_SIZE 20
DEVICE_FLASH_START_ADDR 20
DEVICE_FLASH_END_ADDR 21
DEVICE_OTP_START_ADDR 22
DEVICE_OTP_END_ADDR 23
DEVICE_RAM_ SIZE 24
DEVICE_GROUP 25
DEVICE_ALREADY_ DEFINED 26

Return value:

-1 (OxXFFFFFFF) — invalid data

-2 (O0xXFFFFFFFE) - FPA_INVALID_NO

or

index - 0 to 19 -—> device name - char by char starting from index->0
=> T eg. TMS320F2808

index 0 -> 'T'

index 1 -> 'M'

index 2 -> 'S'

index 3 -> '3'

index 4 —-> '2'

index 5 -> '0'

index 6 —-> 'F'

index 7 -> '2'

index 8 -> '8'

index 9 -> '0'

index 10 -> '8'
index 11 -> 0x0000 -> end of string

index 11 to 19 -> after end of string - irrelevant data.

index 20 -> Flash Start Address eg 0x3E8000 (for F2808)
index 21 -> Flash End Address eg Ox3FT7FFF (for F2808)
index 22 —-> OTP Start Address eg 0x3D7800 (for F2808)
index 23 -> OTP End Address eg 0x3D7FFF (for F2808)
index 24 -> RAM size eg 0x4800 (for F2808)

Note: The device info is related to selected microprocessor. Desired index processor should be
first set in the configuration using F_SetConfig(CFG_MICROCONTROLLER, uP_index);

Below is an example of the procedure that can take names of all supported devices by the API-DLL.
The max size can be tested from the API-DLL, until device name is empty when the microprocessor
index is incremented from the zero up to max value. In the example below is assumed that te max

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 42

number of supported devices is 100, however this value can be dynamically modified if required.
In the procedure below the names and uP index are saved in the DEVICELIST structure, where the
name and index pair are kept in the same DEVICELTIST DeviceList[] element. When the
DeviceList[] is created, then all names are kept in the alphabetic order. Below is example how to
read devices information. These procedure can be found in the FP2000FPA-lib.cpp - see the
MyFP2000Prg.

#include "FlashPro2000-D11.h"
#define MAX_NO_OF_DEVICES 100

typedef struct
{
char name [DEVICE_NAME_SIZE];
int index;
long flash_start_addr;
long flash_end_addr;
long OTP_start_addr;
long OTP_end_addr;
long RAM_size;
int group;
int double_1D;
}DEVICELIST;

DEVICELIST DeviceList [MAX NO_OF_DEVICES];

response = F_OpenlInstancesAndFPAs("*# *"); //get first FPA
if(response > 0)
{
response = F_Set_FPA_index(1);
response = F_Initialization();
get_devices_list(); //now you can read data from API-DLL

int get_devices_list(void)

int n,k, p,st, index_bak, max_up_index;
DEVICELIST tmp;

*tmp.name = '\0"';
tmp.index = 0;
tmp.flash_start_addr = 0;
tmp.flash_end_addr = 0;
tmp.OTP_start_addr = 0
tmp.OTP_end_addr = 0;
tmp.RAM_size = 0;

14

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 43

for (k=0; k<MAX_NO_OF_DEVICES; k++)
DeviceList [k] = tmp;

if(F_Check_FPA_index() == FPA_INVALID_NO)
return(FPA_INVALID_NO);

index_bak = F_GetConfig(CFG_MICROCONTROLLER) ;
max_up_index = 0; p=0;
for (k=0; k<MAX_NO_OF_DEVICES; k++)
{
F_SetConfig(CFG_MICROCONTROLLER, k);
for(n = 0; n<DEVICE_NAME_SIZE; n++)
DeviceList [p] .name[n]= char (0xFF& F_Get_Device_Info(DEVICE_NAME+n)) ;
if(DevicelList[p].name[0] == 0) break;
if(strlen(Devicelist([p].name) < 5) continue;
//processor not supported
DeviceList [p].index = k;
DeviceList [p].flash_start_addr =
F_Get_Device_Info (DEVICE_FLASH_START_ADDR) ;
Devicelist[p].flash_end_addr =
F_Get_Device_Info(DEVICE_FLASH_END_ADDR);
DeviceList [p] .OTP_start_addr =
F_Get_Device_Info(DEVICE_OTP_START_ADDR);
DevicelList [p] .OTP_end_addr = F_Get_Device_Info(DEVICE_OTP_END_ADDR);
DeviceList [p] .RAM_size = F_Get_Device_Info(DEVICE_RAM_SIZE);
DeviceList [p] .group = F_Get_Device_Info(DEVICE_GROUP);
Pl

DevicelList [.double_ID = F_Get_Device_Info(DEVICE_ALREADY DEFINED);
max_up_index = p;
p++;
}
F_SetConfig(CFG_MICROCONTROLLER, index_bak); //restore uP index

//sort names in the table from min to max.
if(max_up_index > 0)
{
for(k=0; k<max_up_index; k++)
{
st = FALSE;
for(n=1; n<=max_up_index; n++)
{
if(strcmp(DevicelList[n-1].name, DevicelList[n].name) < 0)
continue;
st = TRUE;
tmp = Devicelist[n-1];
DevicelList[n—-1] = DevicelList[n];
DeviceList [n] = tmp;
}
if(st == FALSE) break;
}
}

Max_MCU_index = max_up_index;

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 44

return (max_up_index) ;

}

F_DispSetup

F_DispSetup - Copy programmer’s configuration to report message buffer in text form.
VALID FPA index -(1to16)

Syntax:
MSPPRG_API INT X F_DispSetup(void);

Return value:

1 - TRUE;
-2 (OxXFFFFFFFE) - FPA_INVALID_NO

Example:

F_DispSetup () ;
Disp_report_message () ;
//see F_ReportMessage or F_GetReportMessage for details

F_ReportMessage, F_Report_Message

F_ReportMessage - Get the last report message from the programmer.

or F_Report_Message
VALID FPA index -(1to16)

When any of the DLL functions is activated, a message is created and displayed on the dynamically
created programmer’s dialog box. At the end of execution the dialog box is closed and function

returns back to the application program. Reported message is closed as well. The last report message
can be read by application program using F_ReportMessage function. When F_ReportMessage is
called, then report message up to REPORT_MESSAGE_MAX_SIZE characters.

The REPORT_MESSAGE_MAX_SIZE is de fined in the FlashPro2000-dll.h and the value is 2000. Make
sure to declare characters string length no less then 2000 characters.

When F_ReportMessage is called then at the end the internal report message buffer in the
programmer software is cleared. When F_ReportMessage is not called after every communication

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 45

with the target device, then the report message will collect all reported information up to 2000 last

characters.

Syntax:
MSPPRG_API void F_ReportMessage(char * text);
MSPPRG_API char* F_Report_Message(void);

Return value:
none
note: F_Report_Message is available only with the Multi-FPA API-DLL.

Example:
char text [REPORT_MESSAGE_MAX_SIZE];

Example below shows how to take a message and display it in the scrolling box. The Edit box with
the ID e.g. IDC_REPORT must be created first.

void CMspPrgDemoDlg: :Disp_report_message ()

{
F_ReportMessage(text); //API-D11 - get last report message
Message = text;
SetDlgItemText (IDC_REPORT, Message.GetBuffer (Message.GetLength()));

CEdit* pEdit = (CEdit*) GetDlgItem(IDC_REPORT) ;
pEdit->LineScroll (pEdit->GetLineCount (), 0);
UpdateWindow () ;

F_GetReportMessageChar

F_GetReportMessageChar - Get one character of the the last report message from the

programmer.
VALID FPA index -(1to16)

See comment for the F_ReportMessage function.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 46

F_GetReportMessageChar allows to get character by character from the report message buffer.
This function is useful in the Visual Basic application, where all message can not be transfered via
pointer like it is possible in the C++ application.

Syntax:
MSPPRG_API char F_GetReportMessageChar(INT_X index);

Return value:
Requested character from the Report Message buffer. 1 - TRUE

Example:

char text[REPORT_MESSAGE_MAX_ SIZE];
INT_X k;

for(k = 0; k< REPORT_MESSAGE_MAX_SIZE; k++)
] = F_GetReportMessageChar(k);

Example below shows how to take a message and display it in the scrolling box. The Edit box with
the ID e.g. IDC_REPORT must be created first.

void CMspPrgDemoDlg: :Disp_report_message ()
{

char text [REPORT_MESSAGE_MAX_SIZE]; //must be min. size - 2000
INT_X k;
for(k = k< REPORT_MESSAGE_MAX_SIZE; k++)

0;
text [k] = F_GetReportMessageChar(k);
Message = text;
SetDlgIltemText (IDC_REPORT, Message.GetBuffer (Message.GetLength()));

CEdit* pEdit = (CEdit*) GetDlgItem(IDC_REPORT) ;
pEdit->LineScroll (pEdit—->GetLineCount (), 0);
UpdateWindow () ;

F_DLLTypeVer

F_DLLTypeVer - Get information about DLL software type and software revision.
VALID FPA index -(1to16)

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 47

F_DLLTypeVer function returns integer number with DLL ID and software revision version and
copying text message to report message buffer about DLL ID and software revision. Text content
can downloaded using one of the following functions

F_GetReportMessageChar(index)
or F_ReportMessage(text)

Syntax:
MSPPRG_API INT_X F_DLLTypeVer (void);

Return value:

VALUE = (DLL ID) | (OxOFFF & Version)
DLL ID = 0x1000 - Single-DLL for FlashPro430 - Parallel Port
DLL ID = 0x2000 - Single-DLL for FlashPro430 - USB
DLL_ID = 0x3000 - Single-DLL for GangPro430 - USB
DLL_ID = 0x4000 - Single-DLL for FlashPro-CC - USB
DLL_ID = 0x5000 - Single-DLL for GangPro-CC - USB
DLL_ID = 0xA000 - Single-DLL for FlashPro2000- USB
DLL_ID = 0xB0O0O - Single-DLL for GangPro2000 - USB
Version = (0xOFFF & VALUE)

Example:

INT_X id;

id = F_DLLTypeVer();
Disp_report_message () ;
//see F_ReportMessage or F_GetReportMessage for details

F_ConfigFileLoad

F_ConfigFileLoad - Modify programmer’s configuration setup according to data taken
from the specified configuration file.
VALID FPA index -(1to 16) or 0 (ALL FPAs) executed sequentially.

The F_ConfigFileLoad function can download the programmer setup from the external setup file.
Setup file can be created using standard GUI FlashPro2000 Flash Programmer software. When setup
from the file is downloaded, then old configuration setup is overwritten. New setup can be modified
using F_GetConfig and F_SetConfig functions.

Location path and file name of the config file must be specified.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 48

Syntax:
MSPPRG_API INT X F_ConfigFilelLoad(char * filename);

filename - configuration file name including path, file name and extention

Return value:

0 - FALSE
1 - TRUE
(OxFFFe & info) | state
where state is defined as follows:
0 - FALSE
1 - TRUE
-2 (OXFFFFFFFE) — FPA_INVALID_NO

info is defined as follows:
error -> OPEN_FILE_OR_READ_ERR

Configuration file can be created using the FlashPro2000 GUI software. Run FlashPro2000 software,
select desired configuration and save the file using option Save Setup as..and_file_name

Specified parameters in the configuration file can be listed in any order. Configuration file can
specified few or all parameters. Parameter name and value must be separated by minimum one white
character like space or tabulation. See the configuration file created by the FlashPro2000 software for
details. Use the Notepad to open the configuration file..

Example:
st = F_ConfigFileLoad(“c:\test\configfile.cfg”);
if((st & 1) == TRUE)
{
}
else

F_Reset_Target

F_Reset_Target - Generate short RESET pulse on the target’s device RESET line.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 49

Function F_Reset_Target resets target device and target device’s application program can start.
Length of the RESET pulse time is specified by ResetTimeIndex in configuration setup. See
F_ConfigSetup description for details.

Syntax:
MSPPRG_API INT X F_Reset_Target(void);

Return value:

0 - FALSE

1 - TRUE

-2 (0xFFFFFFFE) - FPA_INVALID_NO
Example:

F_Get_Targets_Vcc

F_Get_Targets_Vcc - Get Vcc in [mV] supplied target device.
VALID FPA index -(1to16)

Syntax:
MSPPRG_API INT_X F_Get_Targets_Vecc(void);

Return value:
INT_X - Vcc in milivolts e.g 3000 -> 3.0 V
or (-1) if USB-FPA is not active
-2 (OXFFFFFFFE) - FPA_INVALID_NO

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 50

4.3 Data Buffers access instructions

All data coming to of from target device can be saved in the temporary buffers (see Figure 4.2)
located inside the API-DLL. The data saved in these buffers can be copied to target devices using an
encapsulated or sequential functions. When the full block of data is ready to be saved (eg. code data),
then the part of the data buffers can be modified by adding some unique data like serial numbers,
calibration data etc. to each target before executing the flash programming process. Data buffers can
be modified at any time, as long as the F_OpenlInstancesAndFPAs(..) and F_Initialization() have
been executed successfully. When more then one FPA are used then it is recommended to use only
an executable instructions uses the data buffers for read and write. For example instruction

F_Memory_Read() allows to make this process simultaneously. Results from each targets are saved

in a Read Data buffers - one Read Buffer per one API-DLL. When the simultaneous process is done,

then the content from each buffers can be individually read. The API-DLL contains four buffers (see

Figure 4.2) - Code, Password, Write Data and Read Data buffers. Contents for the Code and

Password buffers can be taken from the files, or data can be written directly to the specified buffer

location. Data to the Write Data buffer can be written directly only, while data from the Read Data

buffer can be read directly only. The FLASH memory can be programmed using contents taken from
the Code buffer or from the Write Data buffer. Data to RAM, registers, I/O (seen as RAM) can be
taken from Write Data buffer only. Contents from RAM, registers, I/O and flash are saved in Read

Data buffer.

Note: The Code buffer contains two items inside - data and flag in each address location. Data is
related to the written value 0 to OXFFFF, while flag - used or empty informs is the particular
byte is used and should be programmed, verified etc, or if it is empty and should be ignored
even if data is OxXFFFF. All flags are cleared when the new code from the file is downloaded,
or if the F_Clr_Code_Buffer() instruction is used.

Below are listed the data buffers access between an application and API-DLL buffers instruction.

F_ReadCodeFile

F_ReadCodeFile - Read code data from the file and download it to internal buffer.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

Function F_ReadCodeFile downloads code from the file to internal memory buffer. Code file format
and file name and location path of the desired file must be specified. Three file formats are supported
- all 16 bits width - Texas Instruments text format, Motorola *.s19 format and Intel *.hex format.
When file is downloaded then contents of this file is analysed. Only code memory location valid for

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 51

the selected MCU microcontroller family will be downloaded to the internal Code buffer. Any code
data located outside memory space of the selected TMS320Fxx microcontroller will be ignored and
warning message will be created.

When the F_ReadCodeFile function is used then the full Code buffer is filled with data OxFFFF and
all flags are cleared (empty flag) first. When the valid data are taken from the code buffer, the data
is saved in buffer and flag modified from empty to used.

Syntax:
MSPPRG_API INT X F_ReadCodeFile(char * FileName);
FileName: file name including path, file name and extention

Return value:

(OxFFFe & info) | state
where state is defined as follows:
0 - FALSE
1 - TRUE
-2 (O0xXFFFFFFFE) - FPA_INVALID_NO

info is defined as follows:
warning -> CODE_OUT_OF_FLASH
CODE_OVERWRITTEN
error —> INVALID_CODE_FILE
OPEN_FILE_OR_READ_ERR

Example:

int st;

st = F_ReadCodeFile(“c:\test\demofile.txt”);
if((st & 1) == TRUE)

F_Get_CodeCS

F_Get_CodeCS - Read code from internal code buffer and calculate the check sum.
VALID FPA index -(1to16).

Syntax:
MSPPRG_API LONG_X F_Get_CodeCS(int index);

index - index of the desired code

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 52

Index = 1 - Calculate check sum of the code from internal code buffer.

2 - Return Code Cs used in the last Autprogram session.
3 - Return Memory Cs used in the last Autprogram session.
Other Index values - reserved for the future option.

Return value:
Calculated check sum or
-2 (OxXFFFFFFFE) — FPA_INVALID_NO

F _ReadPasswFile

F_ReadPasswFile - Read CSM code password data from the file and download it to
internal buffer.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

Function F_ReadPasswFile downloads part of the code from the file to internal memory buffer. From
the code file only data related to the CSM password data are stored in the password memory buffer.
All other data is ignored. Code file format and file name and location path of the desired file must
be specified. Three file formats are supported - Texas Instruments text format, Motorola *.s19 format
and Intel *.hex format.

Syntax:
MSPPRG_API INT X F_ReadPasswFile(char * FileName);

FileName —-> full file name including path, file name and extention

Return value:

(OxFFFe & info) | state
where state is defined as follows:
0 - FALSE
1 - TRUE
-2 (O0xXFFFFFFFE) - FPA_INVALID_NO

info is defined as follows:
error -—> INVALID_CODE_FILE
OPEN_FILE_OR_READ_ERR
PASSWORD_NOT_FOUND

Example:
st = F_ReadPasswFile(“c:\test\demofile.txt”);
if((st & 1) == TRUE)

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 53

F_Clr_Code_Buffer

F_CIr_Code_Buffer - Clear content of the Code buffer.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

Function fill the full Code buffer with data Ox FFFF and clear all flags to empty value.

Syntax:
MSPPRG_API INT X F_Clr_ Code_ Buffer(void);

Return value:
0 - FALSE
1 - TRUE
-2 — FPA_INVALID_NO

Example:

F Put Word_to_Code_Buffer

F _Put_Word_to_Code_Buffer - Write code data to Code buffer.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

Instruction allows to write contents of the code to code buffer instead using the F_ReadCodeFile

instruction. Contents of the downloaded code data can be modified or filled with the new data, if code

buffer has been cleared first (using F_Clr_Code_Buffer function).

Instruction write the data to Code buffer in specified address location and set the used flag in that

location.

Note: Writing the OxFFFF to the specified location where the other then the OxFF data was located
do not remove the contents from the buffer in fully. The new data (OxFFFF) will be written
to Code buffer location, but flag still will be set to used. Use the F_Clr_Code_Buffer()

instruction to fully clear the Code buffer before writing the new data block.

Syntax:
MSPPRG_API INT X F_Put_Word to_Code_ Buffer(LONG_X address,

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1

INT X data);

Parameters value:
code address - valid Flash or OTP address
data - 0x00 to OXFFFF

Return value:
0 — FALSE
1 - TRUE
-2 — FPA_INVALID_NO

Example:
UINT16 code[0x20000];

F_Clr_Code_Buffer();
for(address = addr_min; address < Addr_max; address ++)
{

F_Put_Word_to_Code_Buffer(address, codel[address]);

F_Get_Word_from_Code_Buffer

F_Get_Byte_from_Code_Buffer - Read code data from code buffer.
VALID FPA index -(1to16)

Instruction allows to read or verify contents of the code from code buffer. Data returns value 0x0000
to OxFFFF if in the particular Code buffer location the flag is set to used, otherwise negative value
of the error status is if returned.

Syntax:

MSPPRG_API INT X F_Get_Word from Code_Buffer(LONG_X address);

Parameters value:
code address - valid Flash or OTP address

Return value:

0x00 to OxXFFFF - valid code data
-1 (OXFFFFFFFF) - code data not initialized on particular address
-2 (O0XFFFFFFFE) — FPA_INVALID_NO

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 55

F Put Word_to CSM_Buffer

F_Put_Word_to_CSM_Buffer - Write word to CSM password buffer.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

Instruction allows to write the CSM password to the CSM buffer.

Syntax:
MSPPRG_API INT X F_Put_Word to_CSM Buffer(INT_X dest, INT_X address,
INT X data);

Parameters value:

destination - CSM_PASSWORD_FILE_INDEX 2
CSM_DEFINED_INDEX

code address - 0 to 7

data - 0x0000 to OxXFFFF

Return value:

0 - FALSE

1 - TRUE

-2 (0xFFFFFFFE) - FPA_INVALID_NO
Example:

for(addr = 0; addr < 8; addr ++)
{
F_Put_Word_to_CSM_Buffer (CSM_DEFINED_INDEX, addr, password[addr]);

F _Get_Word_from_CSM_Buffer

F_Get_Word_from_CSM_Buffer - Read CSM password from code, password or defined
password buffer.
VALID FPA index -(1to16)

Instruction allows to read or verify contents of the CSM Password buffer. Data returns value 0x0000
to OxFFFF if in the particular Password buffer location the flag is set to used, otherwise return value
-1 (minus one) if data is empty.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 56

Syntax:
MSPPRG_API INT X F_Get_Word_ from CSM Buffer(INT_X dest INT_X address);

Parameters value:

destination - CSM_CODE_FILE_INDEX 1
CSM_PASSWORD_FILE_INDEX 2
CSM_DEFINED_INDEX

address - 0 to 7

Return value:

0x0000 to OxFFFF - valid password data
-1 (OXFFFFFFFF) - password not initialized on particular address
-2 (OXFFFFFFFE) - FPA_INVALID_NO

F Put Word_to_ Buffer

F _Put_Word_to_Buffer - Write word (UINT16) to temporary Write Data Buffer (See Figure
4.2)
VALID FPA index - (1to 16) or 0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Put_Word to_Buffer(LONG_X address, INT X data);

address: temporary buffer address equal the OTP or Flash destination address
data: UINT16 word to be written.

Return value:
1 - TRUE if specified address is legal
0- FALSE - if address is not wvalid
-2 — FPA_INVALID_NO.

Example:

for(addr = addr_min; addr<=addr_max addr++)
st = F_Put_Word_to_Buffer(addr, dataladdr]);
st = F_Copy_Buffer_to_Flash(addr_min, size);

F _Get_ Word_from_Buffer

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 57

F_Get_Word_from_Buffer - Read one word from the temporary Read Data Buffer (see

Figure 4.2)
VALID FPA index -(1to16)
Syntax:
MSPPRG_API BYTE F_Get_Word_ from Buffer(LONG_X address);

Return value:
Requested word from the specified address of the Read Data Buffer,
or negative wvalue if address is invalid

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 58

4.4 Encapsulated instructions

Encapsulated functions are powerful and easy to use. When called then all device actions from the
beginning to the end are done automatically and final result is reported as TRUE, FALSE or error
number listed in the error list.
. Required configuration should be set first using F_GetConfig and F_SetConfig functions. Also
Code file and Password File (if required) should be opened first. Encapsulated function has following
sequence:

- The Vcc is verified to be higher then 3.0V.

- communication interface between programming adapter and target device is initialized.

- Selected encapsulated instruction is executed (Autoprogram, Verify Fuse or Password,

Memory Erase etc.).
- Communication between target device and programming adapter is terminated.
- Target device is released from the programming adapter.

F_AutoProgram

F_AutoProgram - Target device program with full sequence - erase, blank check,

program, verify and blow security fuse (if enabled).
VALID FPA index - (1to16) or 0 (ALL FPAs) executed simultaneously.

Auto Program button is the most frequently function when programming microcontrollers in
the production process. Auto Program function activates all required procedures to fully program and
verify the flash memory contents. Typically, when flash memory needs to be erased, Auto Program
executes the following procedures:

- initialization

- erase flash memory - restore retain data if enabled,

- confirm if memory has been erase,

- flash programming and verification,

- flash memory check sum verification,

- writing the CSM security password (if enabled).

Syntax:
MSPPRG_API INT X F_AutoProgram(INT X mode);
mode = 0;

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 59

mode = 1 and up - reserved

Return value:

0 - FALSE
1 - TRUE
-2 (OxXFFFFFFFE) - FPA_INVALID_NO
or Status - see error list
Example:
if(F_Initialization() != TRUE) //required API-D11 - initialization

// Initialization error

}
int st = F_ConfigFileLoad(“c:\test\configfile.cfg”);

if((st & 1) != TRUE)

{

o

F_SetConfig(..... P) // modify configuration if required
do{

// prepare next microcontroller

//exit if the last microcontroller
// has been programmed

F_Verify_CSM_Password

F_Verify_CSM_Password -Verify the CSM Security Password.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed simultaneously.

Syntax:
MSPPRG_API INT X F_Verify CSM Password(void);

Return value:

0 - FALSE (JTAG fuse blown or BSL password wrong)
1 - TRUE (valid access to target device)

-2 (O0xXFFFFFFFE) - FPA_INVALID_NO

or Status - see error list

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 60

F_Memory_Erase

F_Memory_Erase - Erase Target’s Flash Memory
VALID FPA index - (1to16) or 0 (ALL FPAs) executed simultaneously.

Erase flash size, or sector to be erased, should be specified in the configuration setup. When mode
erase flag is set to one, then all memory will be erased, regardless erase memory configuration setup
value. When the Retain Data are specified, then retain data are read before erase process, and restored
after the erase process.

Syntax:
MSPPRG_API INT X F_Memory Erase(INT_X mode);
mode = 0 —-> erase space specify by the FlashEraseModeIndex and
restore retain data if enabled;
mode = 1 -> erase all Flash memory, regardless FlashEraseModeIndex and
restore retain data if enabled;

Return value:

0 - FALSE

1 - TRUE

-2 (OXFFFFFFFE) - FPA_INVALID_NO
or Status - see error list

F_Memory_Blank_Check

F_Memory_Blank_Check - Check if the Target’s Flash Memory is blank.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed simultaneously.

Syntax:
MSPPRG_API INT X F_Memory_Blank_ Check(void);

Return value:

0 - FALSE

1 - TRUE

-2 (OXFFFFFFFE) - FPA_INVALID_NO
or Status - see error list

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 61

F_Memory_Write

F_Memory_Write - Write content taken from the Code file to the Target’s Flash Memory.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed simultaneously.

Syntax:
MSPPRG_API INT X F_Memory Write(INT_X mode);
mode = 0;
mode = 1 and up - reserved

Return value:

0 - FALSE

1 - TRUE

-2 (O0xXFFFFFFFE) - FPA_INVALID_NO
or Status - see error list

F_Memory_Verify

F_Memory_Verify - Verify contents of the Target’s Flash Memory and Code Buffer.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed simultaneously.

Note: During the verification process either all memory or just the selected part of the memory is
verified, depending on settings specified in the configuration setup FlashEraseModeIndex.
Only valid data taken from the Code Buffer are compared with the target’s flash memory. If
size of the flash memory is bigger then code size then all reminding data in flash memory is

ignored.
Syntax:
MSPPRG_API INT X F_Memory_ Verify(INT_X mode);
mode = 0;
mode = 1 and up - reserved

Return value:

0 - FALSE

1 - TRUE

-2 (O0xXFFFFFFFE) - FPA_INVALID_NO
or Status - see error list

F_Memory_Read

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 62

F_Memory_Read - Read contents of the Target’s Flash Memory and save it in the temporary
Read Data buffer (see Figure 4.2).
VALID FPA index -(1to16) or 0 (ALL FPAs) executed simultaneously.

Syntax:
MSPPRG_API INT_X F_Memory Read(void);

Return value:

0 - FALSE

1 - TRUE

-2 (OxXFFFFFFFE) - FPA_INVALID_NO

or Status - see error list
Example:

LONG_X addr;

st = F_Memory_Read();

if (st == TRUE)
{
for(addr = addr_min; addr<=addr_max; addr++)
data[addr] = F_Get_Word_from Buffer(addr);

F_Write_ CSM_Password

F_Write_ CSM_Password - Write CSM password to target device.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

To write the CSM security password, the flag CFG_CSMLOCK_PASSWORD_ENABLE in
the configuration setup must be enable

Syntax:
MSPPRG_API INT X F_Write_CSM Password(void);

Return value:

0 - FALSE

1 - TRUE

-2 — FPA_INVALID_NO.

or Status - see error list

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 63

4.5 Sequential instructions

Sequential instructions allow access to the target device in any combination of the small
instructions like erase, read, write sector, modify part of memory etc. Sequential instruction have an
access only when communication between target device and programming adapter is initialized. This
can be done when F_Open_Target_Device instruction is called. When communication is established,
then any of the sequential instruction can be called. When the process is finished, then at the end
F_Close_Target_Device instruction should be called. When communication is terminated, then
sequential instructions can not be executed.

Note: Erase/Write/Verify/Read configuration setup is not required when sequential instructions are
called. Also code file is not required to be downloaded. All data to be written, erased, and read is
specified as a parameter to the sequential functions. Data downloaded from the code file is ignored

in this case.

F_Open_Target_Device

F_Open_Target_Device - Initialization communication with the target device.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed simultaneously.

When F_Open_Target_Device is executed, then
- Vcc is verified to be higher then 3.0V.
- communication between programming adapter and target device is initialized.

Note: The correct CSM password should be downloaded to password or data buffer to be able to activate target devices
if the CSM password is used. If password is unknown then access to the target device cannot be established

Target device is ready to get other sequential instructions.

Syntax:
MSPPRG_API INT X F_Open_Target_Device(void);

Return value:

0 - FALSE (communication failed)

1 - TRUE (communication is OK)

2 - JTAG security blown - communication failed
-2 (O0xXFFFFFFFE) - FPA_INVALID_NO

or Status - see error list

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 64

Example:
int st;

F_Segment_Erase (0x3F0000) ;
st = F_Sectors_Blank_Check(0x3F0000, 0x0800);
if (st != TRUE)

F_Close_Target_Device

F_Close_Target_Device - Termination communication between target device and programming
adapter.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

Instruction should be called on the end of the sequential instructions. When F_Close_Target_Device
instruction is executed then:

- Communication between target device and programming adapter is terminated.

- Target device is released from the programming adapter.

Syntax:
MSPPRG_API INT X F_Close_Target_Device(void);

Return value:

0 - FALSE

1 - TRUE

-2 (OXFFFFFFFE) - FPA_INVALID_NO

or Status - see error list
Example:

See example above (F_Open_Target_Device).

F_Segment_Erase

F_Segment_Erase - Erase any segment of the TMS320Fxx Flash memory.
VALID FPA index -(1to16) or 0 (ALL FPAs) executed sequentially.

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 65

Parameters:
segment address - valid address of the flash segment - any address located in the space
of the selected flash,

To erase a memory segment specify an address within that memory segment. For example to erase
segment 0x3F0000-0x3F3FFF any address from the range 0x3F0000-0x3F3FFF can be specified.

Syntax:
MSPPRG_API INT X F_Segment_Erase(LONG_X address);

Return value:

0 - FALSE
1 — TRUE
-2 (OxXFFFFFFFE) — FPA_INVALID_NO
or Status - see error list
Example:
F_Segment_FErase (0x3F0000) ; // erase segment 0x3F0000 to Ox3F3FFF
F_Segment_FErase (0x3F2345) ; // erase the same segment
F_Segment_FErase (0x3F4000) ; // erase segment 0x3F4000 to Ox3F7FFF

F_Sectors_Blank Check

F_Sectors_Blank_Check - Blank check part or all Flash Memory. Start and stop address of the
tested memory should be specified.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

Parameters:
start address
stop address

Syntax:
MSPPRG_API INT X F_Sectors_Blank Check(LONG_X start_addr,
LONG_X stop_addr);

Return value:
0 - FALSE
1 - TRUE

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 66

-2 (OXFFFFFFFE) — FPA_INVALID_NO
or Status - see error list

F_Write_ Word_to RAM

F_Write_Word - Write one word to RAM, registers, 10 etc. without FLASH or OTP.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

Note: Do not write any data to address below Ox8F00 where the Flash-API is located. Also do not
modify the CLK registers

Write one word to any location of the target device. Write to Flash or OTP has no effect.
Parameters:

address

data - one word to be written to target device

Syntax:
MSPPRG_API INT X F_Write_Word to_RAM(LONG_X addr, INT_X data);

Return value:

0 - FALSE

1 - TRUE

-2 (OxXFFFFFFFE) — FPA_INVALID_NO

or Status - see error list
Example:

F_Write_Word(0x8F00, 0x2143);

F Read Word

F_Write Word - Read one word from RAM, registers, 10, OTP, Flash etc.
VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

Read one word from any location of the target device.
Parameters:

address

Syntax:

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 67

MSPPRG_API INT X F_Read Word(LONG_X addr);

Return value:
data - if result is zero or positive
-2 (OXFFFFFFFE) - FPA_INVALID_NO
minus status (see error list) if rewult is negative

Example:

int st;
st = F_Read_Word(0x8F00);
if(st >= 0)

data = st;
else
st = -st; // see error list

F_Copy_Buffer_to_Flash

F_Copy_Buffer_to_Flash - Write “size” number of words from the Write Data Buffer (see
Figure 4.2) to Flash or OTP. Starting address is specified in the “start
address”.

VALID FPA index -(1to 16) or 0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT_ X F_Copy Buffer to_Flash(LONG_X start_address,
LONG_X size);
Parameters:
start address - valid OTP or Flash Address
size - No of word to be written to OTP or Flash

Return value:
1 - TRUE if data has been saved successfully
0 - FALSE.
-2 - FPA_INVALID_NO.

NOTE: Specified address in the Write Data Buffer is the same as a physical
FLASH address.

Note: Function is useful for writing small data block, usually shorter then 200 bytes, like calibration
data, serial numbers etc. Function can also be used to writing longer data block, however for
this purpose it is recommended to use an encapsulated function F_Memory_Write() described
in this manual. The F_Copy_Buffer_to_Flash() (the same as the F_Memory_Write_Data()

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 68

function) uses byte by byte flash write procedure. When the JTAG or Spy-Bi-Wire interface
is used, then the F_Copy_Buffer_to_Flash() use the JTAG/SBW protocol to directly
program the Flash memory. The F_Memory_Write() function first download the Flash Loader
to RAM memory, and use the block write flash procedures, speeding up programming
process.

Example:

for(k = 0; k<0x100; k++)

addr = 0x3F0000 + k;
st = F_Put_Word_To_Buffer(addr, datalk]);

st = F_Copy_Buffer_to_Flash(0x3F0000, 0x100);

F_Copy_Flash_to_Buffer

F_Copy_Flash_to_Buffer - Read specified in “size” number of bytes from the Flash and save it
in the Read Data Buffer (see Figure 4.2). Starting address is specified
in the “start address”.

VALID FPA index - (1to16) or 0 (ALL FPAs) executed sequentially.

Syntax:
MSPPRG_API INT X F_Copy Flash to Buffer(LONG_X start_address,
LONG_X size);
Parameters:
start address — valid OTP or Flash address,
size - number of words to be read

Return value:
1 - TRUE if data has been read successfully

0 - FALSE.
-2 — FPA_INVALID_NO.
or Status - see error list

NOTE :
Specified address in the temporary flash buffer is the same as a physical FLASH
address.

Example:

FlashPro2000 Multi-FPA API-DLL User’s Guide PMO034A02 Rev.1 69

st = F_Copy_Flash_to_Buffer(0x3F0000, 0x100);
if(st == TRUE)
{
for(k = 0; k<100; k++)
{
addr = k + 0x3F0000;
datal[k] = F_Get_Word_from_Buffer(addr);

FlashPro2000 Multi-FPA API-DLL User’s Guide

PMO034A02 Rev.1

70

